

Journal of Applied Chemical Research, , , (

)

Solvent-free Promoted One-pot Synthesis of H-quinolizine, pyrido[-alisoquinoline -a] quinoline Derivatives and pyrido

Hoorieh Djahaniani^{*}, Bita Mohtat, Maryam Amir Afshari, Shokoh Sadat Ghafori

Department of Chemistry, Collage of basic science, East Tehran Branch, Islamic Azad University, Tehran, Iran Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran

> (Received ; Final version received Aug. Oct.)

Abstract

This work describes a fast, mild, convenient and simple method for preparing of nitrogen heterocyclic derivatives by MCR reaction under solvent-free condition.

Keywords: Solvent free reaction, Multi-component reactions, Acetylenic esters, H-quinolizine, -a]isoquinoline, aH-pyrido[*H-pyrido*[-a]quinoline.

Introduction

Quinolizines are of considerable interest due receiving more attention now-a-days $[\xi - \lambda]$. to their widespread occurrence in natural products, particularly in the field of alkaloids [¹]. The importance of these nitrogen heterocyclic derivatives to the pharmaceutical industry has spurred a great amount of research, and numerous methods have been devised for their construction [7]. Although many routes to the basic ring systems are known, new general synthetic approaches are still highly desirable $[^{\nabla}]$.

The possibility of performing chemical

reactions in the absence of solvent has been The examples reported $[9-1\xi]$, demonstrate that solvent-free reactions are generally faster giving higher selectivities and excellent yields. A large variety of nitrogen heterocycles are known to form zwitterionic species on addition of activated olefins or acetylenes. Pyridine deserves special mention owing to the variety of transformations that it mediates. The earliest work in the area was reported by Diels and Alder, and their study [10] and subsequently the structure elucidation of Acheson [17-7.]

^{*}Corresponding author: Dr. Hoorieh Djahaniani, Department of Chemistry, Collage of basic science, East Tehran Branch, Islamic Azad University, Tehran, Iran. E-mail

showed that pyridine reacts smoothly with *H*-quinolizine in methanol as a solvent dimethyl acetylenedicarboxylate (DMAD) (Scheme 1) [1]. indolizine-\.Y.F-tricarboxylate to form and

Scheme

drawbacks such as longer reaction time, the points were measured on an Electrothermal need for unfriendly solvent, and moderate yield. DMAD under neat condition [^{YY}]. Following, as part of our ongoing research program heterocylic synthesis $[\gamma \gamma \gamma \gamma]$, herein, we applied this methodology to describe the synthesis of *H*-pyrido $[\gamma, \gamma - a]$ isoquinoline, [£]H-quinolizine, and aH-pyrido[1.7-a] quinoline derived from the reaction between standard at $\gamma \cdot \cdot$ and $\gamma \circ$ MHz, respectively. diethyl acetylenedicarboxylate, di-tert-butyl acetylenedicarboxylate pyridine, and quinoline under the same reaction conditions.

Experimental

General

However, the above method suffers from used without further purification. Melting *no.* apparatus. Elemental analyses for C, H, Recently H. Valizadeh and et.all have and N were performed using a Heraeus CHNreported an addition reaction of Nitrogen- O-Rapid analyzer, and the results agreed containing heterocyclic compounds with favorably with the calculated values. Mass spectra were recorded on a Finnigan MAT $\Lambda \xi^{\mu}$. spectrometer operating at an ionization on the development of new protocols in potential of $\vee \cdot$ eV. IR spectra were measured on a Shimadzu IR-[£]7. spectrometer. 'H and ^v^c NMR spectra were measured on a Bruker Avance DRX-⁷· spectrometer using CDCl_{*} as applied solvent and TMS as internal

and isoquinoline, General procedure for the preparation of compound

In a typical reaction, a mixture of isoquinoline ($\cdot, 77$ g, 7 mmol) and dimethyl acetylenedicarboxylate (•, ^m, ^mmol) under solvent free condition was stirred Chemicals were purchased from Fluka and for 1 hour. The progress of reaction was

monitored by TLC. The resulting precipitate	NTON (C=O), NTIN-15V. (C=C). H- NMR (T., MHz CDC1): $\delta = 1.55$
from diethyl ether (Et Ω) to afford the pure	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$
sompounds	$\frac{1}{7} = \frac{1}{7} = \frac{1}$
compounds.	
	(1,2) (1,H, d, $J = (1,1)$ Hz, CH), (1,55) (1,H, d, J
Tetraethyl H-pyrido[-a]isoquinoline-	$= \vee, \forall Hz, CH), \forall, \cdot \notin (\forall H, m, CH), \forall . \forall$
tatura anthomylata (2)	(¹ H, m, CH), ^v , ^v (^t H, m, ^t CH). ^v C-
	NMR (^V °
Yellow powder; yield: •, ^{Az} g (1• ² .), mp ¹⁰¹ -	MHz, $CDCl_r$): $\delta = \uparrow \land, \cdot, \uparrow \land, \uparrow, \uparrow \land, r \text{ and } \uparrow \land, \epsilon$ (ϵ
	CMe ^{r}), ^{V} 9, 9, \land , \land , \land ^{r} , \land and \land ^{ϵ} , \land (ϵ O-CMe ^{r}),
$v \in C.IR$ (KBr) (v_{max}/cm^{-1}) : $v \in v \in v$, $v \in v$, and	$\mathfrak{l}, \mathfrak{t}$ (CH), $\mathfrak{l}, \mathfrak{l}, \mathfrak{C}$), $\mathfrak{l}, \mathfrak{l}, \mathfrak{C}$ (CH), $\mathfrak{l}, \mathfrak{l}, \mathfrak{C}$, (CH), $\mathfrak{l}, \mathfrak{l}, \mathfrak{C}$
۱۳۱۲ (C=O), ۱۳۲۱-۱٤٧٨ (C=C). 'H-	۱۲۰,۲ (CH), ۱۲۷,۲ (CH), ۱۲۸,٦ (CH), ۱۲۹,۷
NMR ("•• MHz, CDCl): $\delta = 1,1 \notin$ ("H, t,	(CH), $17., 1$ (C), $171, \circ$ (C), $151, 7$ (C), $10., \Lambda$
J= Y, Y	(C), $107, \xi$ (C), $177, 177, 7, 175, 1, and$
Hz, CH ^{r}), ¹ , ^{r} (^{r} H, t, $J = \lor, 1 Hz, CHr),1,r o$	111,٣
("H, t, $J = \forall, \forall$ Hz, CH,), $\forall, \forall \land$ ("H, t, $J = \forall, \forall$	(ξ C=O). Anal.Calcd for $C_{r_1}H_{r_2}NO_A$ ($\circ\circ$), \Im):
Hz, CH), ξ, λ (Y H, q, $J = ^{Y, Y}$ Hz, OCH	C, $\forall , \circ \cdot$; H, $\exists , \forall \exists$; N, $\forall , \circ \xi$; Found: C, $\exists \psi, \forall \xi$;
έ. '' ('H, q, $J = $ '', '' Hz, OCH), έ, "''('H,	H, ٦, ٣٣; N, ٢, 0 · %.
q, $J = \forall, \forall$ Hz, OCH), $\xi, \forall \land$ (\forall H, q, $J = \forall, \forall$	
Hz, QCH), \circ , $\forall \forall$ (H , s, CH), $7,55$ (H , d, J	Tetraethyl H-quinolizine-
= Y,Y	- tetracarboxylate (a)
Hz, CH), $7,\circ7$ (H , d, $J = ^{V},7$ Hz, CH), $^{V}, \cdot \cdot$	Yellow powder; yield: •, ^٨ g (٩°%), mp ¹⁹⁰ -
(¹ H, m, CH), ^V , ¹ ° (¹ H, m, CH), ^V , ^Y (^Y H, m,	
^γ CH). ^v C-NMR (^γ ° MHz, CDCl _y): $\delta = $ ^γ (^γ , ^γ),	Nator C.IR (KBr) (v_{max}/cm^{-1}) : 1921, 1910, and
۱۳,۸, ۱٤,۰, and ۱٤,۲ (٤,CH), ۲۰,۸, ۲۱,۰,	۱۲۲۶ (C=O), ۲۱۱۹-۱٤۸۱ (C=C). 'H-NMR
11,0, and 11,1 (٤ OCH) ٩٦,٨ (CH), 111,٣	("•• MHz, CDCl): $\delta = 1, 1 \wedge ($ "H, t, $J = \vee, 1$
(C), 119,0 (CH), 117, A (CH), 117, 9 (CH),	Hz, CH), $^{1,\gamma_{A}}$ ($^{\gamma}$ H, t, $J = ^{\gamma_{1}}$ Hz, CH), $^{1,\gamma_{1}}$
۱۲٦, · (CH),	("Ң,
۱۲۷,٤ (CH), ۱۲۸,۰ (CH), ۱۲۹,۸ (C), ۱۳۰,۰	١٦٢, ٤,
(C), 1 °۹, (C) , 1 ξ \forall , \forall (C), 1 \circ 1, \land (C),	

t, $J = \forall, \forall$ Hz, CH), $\forall, \forall \forall$ (\forall H, t, $J = \forall, \forall$ Hz, H. Djahaniani et al., J. Appl. $\forall \forall, \forall, \xi, \forall \forall \forall, \forall, and \forall \forall \forall, \forall (\xi C=O).$ Anal.Calcd	CH), ξ , \cdot , ($^{\circ}$ H, q, $J = ^{\vee}$, $^{\circ}$ Hz, OCH,), ξ , $^{\circ}$, ($^{\circ}$ H, q, $J = ^{\vee}$, Hz, OCH), ξ , $^{\circ}$, ($^{\circ}$ H, q, $J = ^{\vee}$,)
for C H NO (ξ^{19}, ξ^{9}) : C, $\forall^{\pi}, \forall^{1}$; H, $\circ, \wedge \cdot$;	Hz, OCH), $\xi, \xi \gamma$ (γ H, q, $J = \gamma, \gamma$ Hz, OCH),
۲,۹۸; Found: C, ٦٣,٩٠; H, ٥,٨٣; N, ٢,٩٦ %.	o, 97 (1H, s, CH), 7, 79 (1H, dt, $J = 7, 7$ Hz, J
	= '," Hz, CH), ', ξ ' ('H, m, 'CH), λ ,'"
Tetra-tert-butyl H-pyrido[-a]isoquinoline	(H , dd, $J = ^{q}, \forall$ Hz, $^{\xi}J = ^{\gamma}, \forall$ Hz, CH). C-
- <i>-tetracarboxylate</i> (b)	NMR (^V °
Yellow powder; yield: •,٩٤ g (٨٥%), mp	MHz, $CDCl_r$): $\delta = 17, \epsilon, 17, \Lambda, 1\epsilon, \cdot, and 1\epsilon, 1$
	$(\xi CH^{r}), \forall \cdot, \circ, \forall 1, 7, \forall 1, 7, and \forall 7, \cdot (\xi OCH),$
$VVV^{\circ}C.IR$ (KBr) (v_{max}/cm^{-1}): VVT° , VVV° , and	۹۰,۸ (C), ۱۱۰,۰ (CH), ۱۲۳,۸ (CH), ۱۳٦,۳ (C),

$\mathcal{C}(CH), \mathcal{C}(C), \mathcal{C}(CH), \mathcal{C}(CH), \mathcal{C}(C), \mathcal{C}(C), \mathcal{C}(C), \mathcal{C}(CH),$	CH), $\mathcal{T}, \mathfrak{q}\mathcal{T}$ (q, \mathcal{T} H, $J = \mathcal{V}, \mathcal{V}$ Hz, OCH), \mathcal{E}, \mathcal{A} (q,
107, (C), 117, Λ , 112, Λ , 11 Λ , 1, and 119, Λ (2	\forall H, $J = \forall$, \forall Hz, OCH, $)$, ξ , $\forall \land$ (q, \forall H, $J = \forall$, \forall
C=O). Anal.Calcd for $C_{\gamma}H_{\gamma}NO_{\lambda}(\xi)$, ($\xi)$, C,	Hz, OCH,), ξ , $\forall \gamma$ (q, \forall H, $J = \forall$, \forall Hz, OCH,),
$\forall \cdot, 1^{\xi}; H, \forall, \cdot 1; N, ", "^{\xi}; Found: C, \forall \cdot, 1^{\vee};$	$\circ, \forall \forall (\forall H, dd, J = \forall, \land Hz, J = \forall, \land Hz, CH),$
Н,	$\forall, \cdot \forall$ (H , dd, $J = {}^{q}, {}^{\xi}$ Hz, $J = {}^{\forall}, \wedge$ Hz, CH),
0,9V; N, T,T · %.	٦,0٦ ('H, dd, $J = 9, \xi$ Hz, $J = 7, \Lambda$ Hz, CH),
	۷,۱٤-۷,۱۷ (۳H, m, CH), ۷,۲۳-۷,۲۸ (۱H,
Tetra-tert-butyl H-quinolizine-	m, CH). ^{vr} C-NMR ($^{\vee \circ}$ MHz, CDCl): $\delta =$
- tetracarboxylate (b)	۱۳,۲,
Yellow powder; yield: ', ') g (٩٨%), mp)٩٥-	$1\%, \xi, 1\%, \Lambda, and 1\xi, \cdot (\xi CH\%), 7, ., V, 71, o, 71, V,$
<code>\%V°C.IR</code> (KBr) (v_{max} /cm ⁻): <code>\%%, \%)</code> , and	and $\forall \forall, 1 (\xi \text{ OCH}), \forall \forall, \Lambda (CH), 111, 1 (CH),$
) てんて (C=O),) ててっ」 ミデス (C=C). 'H-NMR (で・・	<pre>\Y1, Y (CH), \Y0, ξ (C), \YV, (C), \YV, 0 (C),</pre>
MHz, $CDCl_r$): $\delta = 1, \xi, 1, \xi, 1, or$ and	$\uparrow\uparrow \land, \uparrow$ (CH), $\uparrow\uparrow \uparrow, \lor$ (CH), $\uparrow\uparrow \bullet, \land$ (CH),
1,00	۱۳۱,٦ (C), ۱۳٦,० (CH), ۱۳۸,٦ (C), ١٥١,٦
$(^{\forall \forall}H, \epsilon s, \forall \gamma CH,), \circ, \circ \land (^{\forall}H, s, CH), $ $\forall, \forall 9_{-}$	$(C), \forall \forall \forall, \forall, \forall, \forall)$
$, \Lambda \gamma$ ($H, dt, J = J, \gamma Hz, J = J, \gamma Hz, CH$),	וזד, ז, וזד, א, and אזע, ז (ל $C=O)$. Anal.Calcd
۷,٤٧-٧,٥٠ (۲H, m, ۲ CH), ۸,٦٢-۸,٦٤ (۱H, dd,	for $C_{\gamma_0}H_{\gamma_0}NO_{\lambda}$ ($\xi 19, \xi 9$): C, $17, 91$; H, $\circ, \wedge \cdot$; N,
${}^{r}J = {}^{q}, {}^{r}Hz, J = {}^{r}, {}^{r}Hz, CH$). ${}^{r}C$ -NMR (V°	۲,۹۸; Found: C, ٦٣,٩١; H, ٥,٨٣; N, ٣,٠١ %.
MHz, $CDCl_{r}$): $\delta = \Upsilon \vee, \Im, \Upsilon \vee, 9, \Upsilon \wedge, *$ and $\Upsilon \wedge, \Upsilon$ (2	Tetra-tert-butyl aH-pyrido[-a]quinolone-
CMe), $\forall 9, 0, \land \cdot, \cdot, \land r, \forall$ and $\land \xi, r$ (ξ O-CMe), r	
$\mathfrak{P}_{\xi, \mathbb{V}}(CH), \mathfrak{P}_{\xi, \mathfrak{P}}(CH), \mathfrak{P}_{\xi, \mathbb{V}}(CH), \mathfrak{P}_{\xi, \xi}(CH), \mathfrak{P}_{\xi}(CH), \mathfrak{P}_{\xi}(C$	- <i>tetracaboxylate</i> (b) Yellow powder: yield: , ξ g (90 ?), mp 10 A-
1% , \circ (C), $1\%7$, 7 (CH), $1\%0$, \circ (C), 1% , $\%$ (CH), (CH),	
107, ξ (C), 117, γ , 110, γ , 111, Λ , and 117, γ	$V^{*\circ}C$. IR (KBr) (ν /cm ⁻¹): $V^{*}\xi^{*}$, $V^{*}\gamma^{*}$, and
C=O). Anal.Calcd for $C_{\gamma\gamma}H_{\xi\gamma}NO_{\lambda}(\gamma\gamma,\gamma\xi)$: C,)790 (C=O),)775-1220 (C=C), 'H-NMR ("···
10,01; H, V,VV; N, 1,17; Found: C, 10,29; H,	Tetraethyl aH-pyrido[-a]quinolone-
۷,٧٦; N, ۲,٦٠	-tetracaboxylate (a)
%0.	Yellow powder; yield: ', g (٩٠%), mp ١٤٣-

 $1 \leq 0^{\circ}$ C. IR (KBr) (vmax/cm⁻¹): 1^{\vee} , 1^{\vee} , 1^{\vee} , MHz, CDCl): $\delta = 1, \xi$, $1, \xi$, $1, \xi$, $1, \sigma$ and and 1747 (C=O), 14 Djahaniani (C=d), J. Appl. Chan. Res., ("TH, ξ s, $\forall T$ CH) $\circ, \circ \xi$ (\forall H, dd, J = T. \bullet Hz, NMR ($^{\forall} \cdot \cdot MHz_* CDCl$): $\delta = \cdot \cdot \cdot \cdot \cdot TH, J$ J=^V, ^Y Hz, CH), ^Y, ^YV (t, ^TH, J = ^V, ^Y Hz, = $7.^{\vee}$ Hz, CH), $7.^{9}$ (H , dd, $J = 9.^{\xi}$ Hz, JCH٣), ١,٢٢ (t, ="H, $J = \forall$." Hz, CH), ","° (t, "H, $J = \forall$," Y.V Hz, CH), 7,71-7,77 (1H, dd, TJ = 9.T Hz, J Hz, =۲.^v Hz, CH), ۷,۱۲-۷,۲٤ (۳H, m, CH), ۷,۲۸- \forall , \forall , \forall , m, CH). \forall ^rC-NMR (\forall ° MHz, r CDCl): δ = 14, \mathcal{T} , 14, \circ , 14, \circ and \mathcal{T} . (\mathcal{E} C(Me)), 4., 1, ٨.,٥, $\wedge \xi$. and $\wedge \xi$. ξ (ξ O-C(Me)), Ψ . Υ (CH), 11., Λ (CH), 177. Ψ (CH), 170.9 (C), 17V.Ψ (C), (CH), 1, 1, (C), 1, (CH), 1, 1, (CH), 1, (CH), 1, (C), 101.9 (C), 177, T,

 $177, \forall, 175, \uparrow, and 177, 9 (5 C=O).$ Anal.Calcd for

 $C \underset{r_{1}}{H} \underset{r_{V}}{NO} (\overset{(\circ \circ)}{,} \overset{(\uparrow \circ)}{,} \overset{(\downarrow \circ)}{,} \overset$

acetylenedicarboxylate ξ in the absence of solvent at ambient temperature produces ξ H-pyrido[γ , γ -a]isoquinoline \circ in an excellent yields (Scheme γ).

Results and Discussion

The reaction of isoquinoline r and dialkyl

Scheme .

Isoquinoline undergoes a smooth reaction with dialkyl acetylenedicarboxylates ξ in the absence of solvent at ambient temperature to produce functionalized ``bH-pyrido[-a] isoquinoline (**a-b**) in an excellent yields.

The reaction was completed within an hour (monitored by TLC). The 'H and '^rC NMR spectra of the crude products clearly indicated the formation of °. The structures of compounds **a-b** were deduced from their elemental analyses and their IR, 'H and '^rC NMR spectra. The mass spectra of these

compounds displayed molecular ion peaks at the appropriate m/z values.

Although the mechanistic details of the reaction are not clearly known, a plausible rationalization may be advanced to explain the product formation. Presumably, the zwitterions $[{}^{\Upsilon}{}^{-}{}^{\Upsilon}{}^{\Lambda}]$ formed from isoquinoline and dialkyl acetylenedicarboxylate, adds to second acetylenic compound to furnish intermediate ${}^{\vee}$. This intermediate undergoes cyclization and then ${}^{\vee}{}^{\circ}$ H-shift to furnish the fused structure ${}^{\circ}$ (Scheme ${}^{\vee}$).

Scheme .

Reaction of pyridin and quinoline with dialkyl $\epsilon_{aH-pyrido}$ respectively acetylenedicarboxylates ٤ above (Scheme ξ). under conditions produce [£]H-quinolizine ^Y and

Scheme .

Conclusion

The presented reaction provides a simple entry R. Dos Santos, C. A. C. Lopes, to the one-pot synthesis of \mathcal{E} H-pyrido [\mathcal{V} ·)-a] J. Ethnopharmacol, \mathcal{V}^{q} , \mathcal{V}^{q} (\mathcal{V}^{q} ·). isoquinoline, pyrido [$^{\prime}$, $^{\prime}$ -a] quinoline derivatives of potential *Adv.Heterocycl.Chem.*, $^{\prime}$, $^{\prime}$ ($^{\prime}$). synthetic interest. The present procedure [5] J. O. Metzger, Angew. Chem., Int. Ed., "V, carries the advantage that, not only is the YaVo (199A). reaction performed under neutral conditions, [°] R. S. Varma, *Green Chem.*, ¹, ^{*z*}^{*r*} (¹⁹⁹⁹). but also the substances can be mixed without [7] K. Tanaka, F. Toda, Chem. Rev., 1., 1.10 any activation or modification.

References

[1] W. Eberbach, W. Maier, *Tetrahedron Lett.*, ۳. 0091 (19A9).

[⁷] E. R. De Almeida, A. A. Da Silva Filho, E.

^٤H-quinolizine, and ^٤aH- [^r] F. J. Swinbourne, J. H. Hunt, G. Klinkert,

 $(\gamma \cdot \cdot \gamma).$

 $[^{\vee}]$ R. S. Varma, *Pure Appl. Chem.*, $\forall ^{\vee} (^{\vee}), ^{\vee 9^{\vee}}$ $(7 \cdots 1).$

[^A] K. Tanaka, F. Toda, *Solvent-free Organic Synthesis, Wiley-VCH*, GmbH, $({}^{\intercal} \cdot \cdot {}^{\intercal})$.

172

Divers, \wedge , $\xi \gamma \gamma (\gamma \cdot \cdot \xi)$. [⁹] T. P. Loh, J. M. Huang, S. H. Goh, J. Vittal, J. Org. Lett., Υ : (9), Υ 91 $(\gamma \cdot \cdot \cdot).$ [\.] A. R. Hajipour, M. Arbabian, A. E. Ruoho, J. Org. Chem., TV, ATTY $(7 \cdot \cdot 7).$ [11] Z. B. Xu, Y. Lu, Z. R. Guo, Synlett., ξ , 072 $(\gamma \cdot \cdot \gamma)$. [17] N. Azizi, M. R. Saidi, Organometallics, 1201 ۲٣ $(\mathbf{7} \cdot \mathbf{\cdot} \mathbf{\xi}).$ $[1^{n}]$ N. Azizi, M. R. Saidi, Org. Lett., \forall , ٣٦٤٩ (٢٠٠٥). [12] N. H. Khan, S. Agrawal, R. I. Kureshy, S. H. R. Abdi, S. Singh, E. Suresh, R.V. Jasra, *Tetrahedron Lett.*, $\xi 9$, $\forall \xi \cdot (\forall \cdot \cdot \land)$. [1°] O. Diels, K. Alder, *Liebigs Ann. Chem.*, 1, ٤٩٨ (1987). [17] R. M. Acheson, J. Woollard, J. Chem. Soc., Perkin Trans, 1, 5TA (19Vo). [1V] R. M. Acheson, G. A. Taylor, Proc. Chem. Soc., 117 (1909). [1^A] R. M. Acheson, G. A. Taylor, J. Chem. Soc., 1791 (197.). [19] R. M. Acheson, J. M. F. Gagan, G. A. Taylor, J. Chem. Soc., 19.7 (1977). [^ү ·] R. M. Acheson, A. O. Plunkett, J. Chem. Soc., 1111 (1915). [^Y] M. T. Maghsoodlou, R. Heydari, S. M. Habibi Khorassani, B.Tahami Pour, F. Maghfuri, G. Marandi, Turk J Chem., ^{ro}, [£].o $(7 \cdot 11).$ [^Y^Y] H. Valizadeh, A. Shomali, H. Gholipour, J. Heterocyclic Chem., $\xi \wedge$, $\chi \xi \cdot$ $(7 \cdot 11).$

[^Y^r] I. Yavari, F. Nasiri, H. Djahaniani, Mol

- $[\Upsilon^{\xi}]$ I. Yavari, H. Djahaniani, *Tetrahedron* Lett., $\xi \gamma$, $\Upsilon^{\eta} \circ \Upsilon^{\tau}$ ($\Upsilon^{\tau} \cdot \cdot \Upsilon$).
- $[\uparrow \circ]$ I. Yavari, H. Djahaniani, *Tetrahedron Lett.*, $\xi \lor$, $\forall \xi \lor \lor (\uparrow \cdot \cdot \uparrow)$.
- [⁷] R. M. Acheson, B. J. Jones, J. Chem.

Soc., $\forall \xi \land (1977)$.

- $[{}^{\Upsilon V}]$ R. M. Acheson, M. W. Foxton, A. R.
- Hands, J. Chem. Soc., $\forall \land \forall (197 \land)$.
- [^Y^A] R. M. Acheson, R. S. Fienberg, J. M. F.
- Gagan, J. Chem. Soc., $9 \le \Lambda$ (1970).